SavitribaiPhule Pune University T.Y.B.Sc. (Computer Science) - Sem – V Course Type: DSEC – I Course Code : CS - 351 Course Title : Operating Systems – I					
•	g Scheme: et / week	No. of Credits: 2	Examination IE : 15 UE: 35	marks	
structured pro	s like stack, queu gramming langua	e, linked list, tree, graph, has ge	hing, file structures,	any	
 To study the To understate 	and the concept of e various function and the notion of p	operation system and its prins s and services provided by o rocess and threads	operating system	nderstand	
 Course Outcomes: After completion of this course students will be able to understand the concept of 1. Processes and Thread Scheduling by operating system 2. Synchronization in process and threads by operating system 3. Memory management by operating system using with the help of various schemes Course Contents 					
Chapter 1	Introduction to	Operating Systems		6 lectures	
 Operat Operat Protec Compution Open s Bootin Operat 	ting source operating S g ing System servic	ire ts- Traditional, mobile , distr ystem		r, peer to peer	
Chapter 2	Processes and 7		5.	6 lectures	
 Process Concept – The processes, Process states, Process control block. Process Scheduling – Scheduling queues, Schedulers, context switch Operations on Process – Process creation with program using fork(), Process termination Thread Scheduling- Threads, benefits, Multithreading Models, Thread Libraries 					
Chapter 3	Process Schedu			7 lectures	
Basic (Preem Schedu	Concept – CPU-I/ ptive scheduling, ıling Algorithms	O burst cycle, Scheduling Ci	ıling, Round-robin s		
Chapter 4	Synchronizatio			5 lectures	
	round al Section Probler hores: Usage, Imj				

 Classic Problems of Synchronization – The bounded buffer problem, The reader writer problem, The dining philosopher problem 				
Chapt	er 5 Memory Management	12 lectures		
•	Background – Basic hardware, Address binding, Logical versus physical space, Dynamic loading, Dynamic linking and shared libraries Swapping Contiguous Memory Allocation – Memory mapping and protection, Mem			
•	allocation, Fragmentation Paging – Basic Method, Hardware support, Protection, Shared Pages Segmentation – Basic concept, Hardware Virtual Memory Management – Background, Demand paging, Performan	ice of		
Refer	demand paging, Page replacement – FIFO, Optimal, LRU, MFU ence Books:			
1.	Operating System Concepts, Avi Silberschatz, Peter Galvin, Greg Gagne, Edition, Wiley Asia	Student		
2.	Operating Systems: Internals and Design Principles, William Stallings, Prof India.	rentice Hall		
3.	Advanced Concepts in Operating Systems, M Singhal and NG Shivaratri, McGraw Hill Inc, 2001	Tata		
4.	The 'C' Odyssey, UNIX-the open boundless C, Meeta Gandhi, Tilak Shett Shah, BPB publication	ty,Rajiv		

Savitribai Phule Pune University T.Y.B.Sc. (Computer Science) - Sem – VI Course Type: DSEC - IV Course Code: CS - 361 Course Title : Operating Systems-II					
	g Scheme: ct / week	No. of Credits: 2	Examination Sche IE : 15 marks UE: 35 marks	me:	
Prerequisites Concepts of C		rocesses and Threads Sche	duling, Synchronization		
 To un To stu Course Outc	derstand the issue of derstand the concep idy the concept of di omes: After comple	f Deadlocks in Process man t of File system manageme stributed and mobile opera etion of this course studen	nt & disk scheduling ting systems	and	
 Scheduling Distributed 	nt of deadlocks and storage or disk for Operating System a	File System by operating s processes and its architecture and the	•	le OS.	
Course Cont Chapter 1	ents Process Deadlock	70	7 100	tures	
Dead allocaDeadle	lock Methods- Preve tion graph algorithm ock Detection	n – Necessary conditions, ention and Deadlock Avoid n, Banker's Algorithm – Process termination, Res	lance - Safe state, Resourc	e	
Chapter 2	File system Mana		1 1	tures	
 Acces Direc director Alloc Free S 	tory overview, Sing ory, Acyclic graph d ation Methods – Co pace Management -	es, File operations ntial, Direct, Other access le level directory, Two leve lirectory, General graph din ntiguous allocation, Linked - Bit vector, Linked list, G	el directory, Tree structure ectory l allocation, Indexed alloca rouping, Counting, Space r	ntion naps	
Chapter 3	Disk scheduling		4 lec	tures	
• Disk S	 Overview, Disk Structure Disk Scheduling, FCFS Scheduling, SSTF Scheduling, Scan Scheduling-Scan Scheduling, Look Scheduling, Disk Management 				
Chapter 4	Introduction to E Architecture	Distributed operating syst	ems & 11 le	ectures	
 Types Archit center System 	ed architectures	ms ered architectures , Object- ntralized organization, Dec			

• Example architectures : Network file system(NFS), Web-based distributed systems					
Chapter 5	Mobile Operating Systems	7 lectures			
• Introd	uction				
• Featur	• Features				
• Specia	• Special Constraints and Requirements of Mobile Operating System				
Specia	Special Service Requirements				
ARM	• ARM & Intel architectures – Power management				
Mobil	• Mobile OS architectures – Underlying OS, kernel structure & native level				
progra	mming, Runtime issues, Approaches to power management				
Comm	• Commercial Mobile Operating Systems - Windows Mobile, iPhone OS (iOS),				
Andro	id				
A Con	nparative Study of Mobile Operating Systems (Palm OS, Android,	Symbian			
OS, B	lackberry OS, Apple iOS)				
Reference Books:					

1) Advanced Concepts in Operating Systems, M Singhal and NG Shivaratri, Tata McGraw Hill Inc, 2001 (Text Book)

2) Operating System Concepts, Avi Silberschatz, Peter Galvin, Greg Gagne, Student Edition, Wiley Asia

3) Operating Systems: Internals and Design Principles, William Stallings, Prentice Hall of India.

4) Distributed Operating Systems Concepts and Design, Pradeep K. Sinha, PHI

5) Prasant Kumar Pattnaik, Rajib Mall, "Fundamentals of Mobile Computing", PHI Learning Pvt.Ltd, New Delhi – 2012.

6)A. Tannenbum, Herbert Bos, "Modern Operating systems", Pearson Publication, 4th Edition 7) A. Tannenbum, Maarten van Steen, "Distributed systems", 3rd Edition

8) Source wikipedia, Mobile operating systems, General books, LLC, 2010